翻訳と辞書 |
Visual neuroscience : ウィキペディア英語版 | Visual neuroscience
Visual Neuroscience is a branch of neuroscience that focuses on the visual system of the human body, mainly located in the brain's visual cortex. The main goal of visual neuroscience is to understand how neural activity results in visual perception, as well as behaviors dependent on vision. In the past, visual neuroscience has focused primarily on how the brain (and in particular the Visual Cortex) responds to light rays projected from static images and onto the retina.〔 While this provides a reasonable explanation for the visual perception of a static image, it does not provide an accurate explanation for how we perceive the world as it really is, an ever-changing, and ever-moving 3-D environment. The topics summarized below are representative of this area, but far from exhaustive. ==Face processing== A recent study〔 using Event-Related Potentials (ERPs) linked an increased neural activity in the occipito-temporal region of the brain to the visual categorization of facial expressions.〔 Results focus on a negative peak in the ERP that occurs 170 milliseconds after the stimulus onset.〔〔 This action potential, called the N170, was measured using electrodes in the occipito-temporal region, an area already known to be changed by face stimuli. Studying by using the EEG, and ERP methods allow for an extremely high temporal resolution of 4 milliseconds, which makes these kinds of experiments extremely well suited for accurately estimating and comparing the time it takes the brain to perform a certain function. Scientists〔 used classification image techniques,〔 to determine what parts of complex visual stimuli (such as a face) will be relied on when patients are asked to assign them to a category, or emotion. They computed the important features when the stimulus face exhibited one of five different emotions. Stimulus faces exhibiting fear had the distinguishing feature of widening eyes, and stimuli exhibiting happiness exhibited a change in the mouth to make a smile. Regardless of the expression of the stimuli's face, the region near the eyes had an impact on the EEG before the regions near the mouth. This revealed a sequential, and predetermined order to the perception and processing of faces, with the eye being the first, and the mouth, and nose being processed after. This process of downward integration only occurred when the inferior facial features were crucial to the categorization of the stimuli. This is best explained by comparing what happens when participants were shown a face exhibiting fear, versus happiness. The N170 peaked slightly earlier for the fear stimuli at about 175 milliseconds, meaning that it took a participants less time to recognize the facial expression. This is expected because only the eyes need to be processed to recognize the emotion. However, when processing a happy expression, where the mouth is crucial to categorization, downward integration must take place, and thus the N170 peak occurred later at around 185 milliseconds. Eventually visual neuroscience aims to completely explain how the visual system processes all changes in faces as well as objects. This will give a complete view to how the world is constantly visually perceived, and may provide insight into a link between perception and consciousness.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Visual neuroscience」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|